If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+16x-7=0
a = 5; b = 16; c = -7;
Δ = b2-4ac
Δ = 162-4·5·(-7)
Δ = 396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{396}=\sqrt{36*11}=\sqrt{36}*\sqrt{11}=6\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-6\sqrt{11}}{2*5}=\frac{-16-6\sqrt{11}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+6\sqrt{11}}{2*5}=\frac{-16+6\sqrt{11}}{10} $
| -4x-2=-8-5x | | -10n^2+9n+1=0 | | 2x+12=-18+10 | | 13(6x-9)-12(8x+10)=44 | | -1+8x-1+3=1+8x | | 2y+5=y+3 | | -3n^2-6n-3=0 | | -7f=8−8f | | 9-3n=n+22n | | -1-p=13-3p | | 3x^2+23x-7.9=0 | | -16^2+10x-27=-6x+5 | | 2y+y-2=7 | | 4p^2-7p-2=0 | | -2(x-5)=3(-x+4) | | 3/(4x+9)=0 | | -2a^2+9a-9=0 | | 4b-9=2b=13 | | 2+5n=16+7n | | 2+23.5t-4.9t^2=0 | | -4x-12=-52 | | 203=-x+3 | | -2n^2-4n+6=0 | | 6x-2+20+90=180 | | 4+7h=9h | | f(-3)=8(-3)-4 | | X²+5x+736=0 | | x-25=-50 | | -6b^2+9b=0 | | 2x-4+8x=-16 | | 17-13=2(x-4) | | 231-y=66 |